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Abstract

We present a system for detecting and tracking vehicles in surveillance video. Our algorithm

uses a simple motion model to determine salient regions in a sequence of video frames. Similar

regions are associated between frames and clustered to yield coherent final tracks. The entire

process is automatic and uses computation time that scales according to the size of the input

video sequence.
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1 Introduction

Automatically detecting and tracking vehicles in video surveillance data is a challenging problem

in computer vision with important practical applications, such as traffic analysis and security.

Video cameras are a relatively inexpensive surveillance tool. However, manually reviewing the

large amount of data they generate is often impractical. Thus, algorithms for analyzing video

which require little or no human input are an attractive solution and have been an area of active

research for over a decade. In addition to correctness in detecting and tracking vehicles, the

computational complexity of a tracking system is important. For many applications, real-time

or near real-time tracking capability is desired.

Our approach is designed with these requirements in mind. The computational complexity

of our algorithm is linear in the size of a video frame and the number of vehicles tracked. The

algorithm differs from some of the previous vehicle tracking work in that it does not require any

user calibration of road or camera location. Instead, we use low-level cues to pick out moving

regions, from which we build template-based appearance models for vehicles. These models are

used to associate the detections of a vehicle in different frames, yielding a coherent track.

In the remainder of the paper, we first discuss related tracking research in Section 2. Next,

we present the main components of our tracking algorithm, the background model, appearance

templates, and clustering procedure, in Section 3. In Section 4 we display results on several

traffic surveillance videos. We conclude in Section 5 with a discussion of our algorithm’s per-

formance and suggestions for future improvements.

2 Related Work

Vehicle tracking has a long history in the computer vision literature. Koller et. al. [4, 5, 6]

have described a few different early approaches. In [4], parameterized 3D polyhedral vehicle

models are matched to coherently moving image features. This algorithm uses an offline camera

calibration step to aid in recovery of the 3D pose. An iterated extended Kalman Filter is used

to update estimates of the model’s location and pose.

In [5] and [6], the authors use an adaptive background model to estimate the location of
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moving blobs in a scene, which are tracked using a Kalman filter based motion model. They use

an explicit occlusion reasoning step in order to disambiguate overlapping vehicles. This step is

dependent on knowledge of the scene geometry, as the authors assume motion is constrained

to the ground plane. A final contribution of this work is the use of belief networks to describe

high-level events in the scene, such as lane changes and stalled vehicles. Computing this type

of information from the individual vehicle tracks is a useful surveillance tool.

The authors of [1] focus on obtaining real-time performance from a vehicle tracking sys-

tem. Their algorithm finds and tracks corner features in video and then groups the resulting

individual feature tracks into vehicles using common motion as a cue. Taking advantage of a

user specified road geometry, they group neighboring features whose depth-corrected relative

displacement remains consistent with vehicle motion. In order to achieve real-time performance

on the hardware available in 1997, the authors implemented their system on specialized digital

signal processors.

More recently, [3] applies a feature tracking approach to traffic viewed from a low-angle

off-axis camera. Vehicle occlusions and perspective effects pose a more significant challenge for

a camera placed low to the ground. To confront this challenge, their system uses a pre-specified

scene geometry to judge vehicle height, which is used as a cue for grouping features.

As background models are integral to a number of the above approaches, recent work has

also focused on developing sophisticated and reliable background models. In [2], the authors

compare the performance of a large set of different background models on urban traffic video.

They also experiment with sequences filmed in weather conditions such as snow and fog, for

which a robust background model is required.

3 Tracking Algorithm

Our general tracking approach is to extract salient regions from the video using a learned

background model, and build template models for vehicle appearance from these regions. We

first apply a local motion model to the difference between consecutive frames to produce a

map of salient foreground pixels. The foreground is segmented into regions which are used as

templates for a normalized correlation based tracker. Computing the similarity between each
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template and its spatially nearby possible matches in the next frame, we have a criterion by

which to group regions into coherent objects. Extraneous tracks that violate the appearance

or motion characteristics of a vehicle are then dropped from the final output. We discuss the

details of each of these steps in the sections below.

3.1 Background Model

A thorough survey of background models for urban traffic surveillance is presented in [2]. As our

approach is not centered on background modeling, we implement a simple background model

that is effective on the videos of interest. Our background model is used as an initial processing

stage and could easily be swapped for more sophisticated or computationally intensive methods

or those tailored to specific weather conditions if the need arose. The desired output of this

stage is simply a binary map indicating which image pixels belong to the foreground, as shown

below in Figure 1(b).

(a) (b) (c)

Figure 1: (a) Probabilistic output of the background model, (b) thresholded foreground map,

and (c) resulting foreground regions outlined.

To generate this map, we use the fact that a vehicle is a group of pixels that move in a

coherent manner, either a lighter region over a dark background or vice versa. More specifically,

while the vehicle may be the same color as the background, at least some portion of it must

appear different from at least one part of the background against which it is seen (unless it is

perfectly camouflaged, in which case no vision system can detect it). We ignore any vehicle

that doesn’t move under the intuition that any vehicle that is of interest to track will move at

least once during the surveillance video (especially over long periods of surveillance). It is then
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trivial to go back and identify the presence of a stationary vehicle if the track begins or ends

within the scene.

We model the difference between consecutive intensity values at the same image pixel as a

Gaussian, It+1(x, y)−It(x, y) ∼ N(µ, σ), where µ and σ are set to the sample mean and standard

deviation of the intensity differences observed over a fixed number of surrounding frames. Note

that µ and σ are independent of the pixel location (although a location-dependent model is also

possible). In addition, It and It+1 are normalized images, with the intuition that we want to

correct for any sudden changes in lighting, such as may be caused by the sun emerging from

behind a cloud. Though we do not attempt to correct for localized illumination changes, one

could do so by performing a per pixel or per region normalization based on a larger surrounding

region.

As an initial step, we smooth the difference images in both the spatial and temporal di-

mensions before learning or applying the background model. We use Gaussian kernels with a

standard deviation of 1 pixel in each spatial dimension and 2 frames in the temporal dimension.

Since vehicles are large blocks of pixels moving in the same manner, smoothing reduces noise

while leaving the signal from true vehicles untouched.

Figure 1 shows the results of this process. Figure 1(a) displays, for each location, the prob-

ability of a lower intensity difference than that observed given that the pixel in question is part

of the background. We threshold this probability to obtain the foreground map in Figure 1(b).

The threshold was chosen in order to produce few false positive foreground detections.

For the experiments discussed later in Section 4, we used the entire video sequence to estimate

the parameters of the background model. However, a real-time system could dynamically update

these parameters with constant cost per frame by simply keeping a buffer of a fixed number of

frames.

3.2 Appearance Templates

Segmenting the foreground map into connected components and taking the convex hull of each,

we obtain the foreground regions shown in Figure 1(c). The entire region within the convex hull

is used since vehicles tend to be convex and in addition, their interiors might be too uniform
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to be picked up by the motion model (as is the case with the upper interior of the bus in

Figure 1(b)).

Figure 2: Templates for foreground components. Shown here are the templates generated for

the ten largest foreground regions displayed above in Figure 1(c).

For each foreground region, we take its surrounding image patch as a template for use

in matching its appearance in the surrounding frames. Our code enables either the entire

rectangular patch surrounding the region, or only the portion of the image patch within the

convex region, to serve as a template. Using the entire patch captures some of the background

in the template, but may be useful if the background changes slowly and there is a strong

boundary between the vehicle and background. The experiments reported later use the full

image patch.

Figure 2 demonstrates the templates obtained for the video frame from Figure 1. We track

each template by computing its best normalized correlation score in the next frame. This is

equivalent to convolving normalized versions of the template and succeeding frame. Figure 3

illustrates the result for one template. In practice, we do not search the entire image for the

best normalized correlation score, but rather just a local window, since we can place an upper

bound on the maximum vehicle velocity (a more sophisticated scheme could also estimate the

velocity from the data, but for our purposes it suffices to set this parameter by hand). To handle

vehicles of different scales, we set the search window side length to be twice that of the vehicle

template.
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(a) template (b) image (c) correlation

Figure 3: Normalized correlation response (c) on image (b) for the template shown in (a). The

template in (a) was extracted from the image 10 frames prior to that shown in (b). The best

match for the template, indicated by the dark red dot, correctly identifies the car in question.

The second best match is a different white car that is similar in appearance.

3.3 Clustering Tracks

By using the normalized correlation tracker to compute a template’s best match in both the

preceding and succeeding frames, we have an estimate of the position of the object represented

by the template in those frames. Unifying regions with significant overlap in their tracked

locations produces a single track for each vehicle, as shown in Figure 4. We also drop small

regions that have not been unified with larger regions as they are likely due to noise from the

background model.

4 Results

We tested our algorithm on publicly available surveillance video of traffic intersections obtained

from [8]. Typical results are shown in Figures 5 and 6.

Our unoptimized Matlab implementation runs at a speed of approximately 2 seconds per

frame on somewhat dated hardware (a 1.5GHz Pentium IV). The background modeling stage

is relatively fast, as it simply involves a fixed number of operations per pixel. In addition,

the template matching process is parallelizable, so in combination with further optimization or

custom hardware, a real-time implementation is feasible. Moreover, initial experiments indicate
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(a) (b) (c)

Figure 4: Foreground components in consecutive frames are clustered based on the output of

the normalized correlation tracker. (a) Lines indicate the best match of each region from the top

frame in the next consecutive frame (shown on the bottom). (b) All regions initially identified

in the two frames. (c) We produce a consistent vehicle track by clustering regions from different

frames based on the proximity of their matches.

graceful degradation of the system when run on lower resolution video to improve processing

speed.

5 Discussion and Future Work

While we obtained decent results on a number of test video sequences, there are many areas in

which we can look to make future improvements.

As previously mentioned, in the future it could be advantageous to plug in a more sophis-

ticated background model, capable of dealing with weather conditions such as fog or snow.

Swapping out the background model presented here for a different one is straightforward and

does not affect the operation of the rest of the processing pipeline.

Integration of an explicit occlusion reasoning phase, possibly as a post-processing step, could

repair the instances in which our algorithm incorrectly split one vehicle track into two as a result
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Figure 5: Vehicle tracking results for surveillance video of a traffic intersection. Cars are color-

coded according to their identities. Every other frame of a 40 frame sequence is displayed.

of an occlusion. Figure 6 displays a few examples of this situation. Another valuable tool in

correcting tracker errors could be the use of road and traffic flow models. There is existing work

on automatic road extraction from video [7].
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Finally, it may be possible to use the model of each vehicle’s appearance that we recover as

part of the tracking process in novel ways. For example, it could be used to detect the same

vehicle in novel scenes, such as one monitored by a different traffic camera, or search for a

detection of a specific class of vehicle in a video database.
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Figure 6: Tracking results on four different traffic video sequences. A 40-frame window of

each sequence is shown above. We ran the same algorithm on each sequence without altering

any parameter settings. The majority of cars are correctly identified and tracked, however

lower resolution cars (bottom row) are particularly challenging. Our background model also

has difficulty with the double trailer in this row. Some occlusions are correctly handled (lower

right of top row and upper left of second row), while others could benefit from explicit occlusion

reasoning as a post processing step (right side of middle rows).
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